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A comparison of three integrators is made in an effort to choose the one best
suited for variations-of-parameters computations of the orbits of satellites.

l. Introduction

In searching for better methods of computing the orbit
of a satellite over many revolutions, a special perturbations
theory using a variation-of-parameters formulation has
been developed (Ref. 1). As a prelude to obtaining valid
comparisons with the Cowell technique currently in use,
a study of various integrators was made in an effort to find
the integrator best suited to a variation-of-parameters
formulation. This study was initiated in response to sug-
gestions (Ref. 2) that for a given set of differential equa-
tions, there exists an optimum integrator.

This study considered three integrators. One of these
is a variable-order integrator, DVDQ?* (Ref. 3). The second
is another polynomial-type integrator which has a fixed
order. The third integrator, termed “Fourier” by Sheffield
(Ref. 2), integrates trigonometric functions exactly.

1Double-precision variable-order differential equation solver.
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These integrators were compared by the execution of
two sets of test cases. The integrators were first compared
in the predict-only mode, then in the predict-correct
mode. The numerical results of these studies and the con-
clusions reached are presented in the following section.

Il. Numerical Results of Comparing the
Integrators

A. Test Problem

The test problem for this study was a Mars orbiter with
a semimajor axis of about 12,000 km, an eccentricity of
about 0.6, and a period of about 12 h. The perturbing
forces included were the gravitational attraction of the
sun and the Mars zonal harmonics [, Js, J., and J;. Inte-
gration was carried out for five days (ten orbits).
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A classical variation-of-parameters formulation was
used. The orbital elements that were integrated consisted
of the following:

a = semimajor axis
e = eccentricity
i = inclination

M, = mean anomaly at epoch

o = argument of periapsis

I

Q = longitude of the ascending node

The trajectory was started at about 2 h past periapsis.
Print was obtained at both apoapsis and periapsis for each
orbit.

To obtain an “exact” solution to this problem, the
variable-order integrator DVDQ was used with very tight

local integration tolerances (10-® to 10-'*). The resulting
step sizes chosen varied from 900 sec at apoapsis down to
less than 60 sec at periapsis. All of the other runs made
were compared to this run to determine their accuracies.

B. Comparison of Predict-Only Cases

Table 1 contains the apoapsis and periapsis errors on
each orbit for several predict-only cases. The left column
contains a brief description of each case. The errors in six
of the ten orbits are tabulated. The right column contains
the total number of integration steps.

The description of the DVDQ case contains the maxi-
mum, minimum, and average step sizes and integration
orders. In the other variable-step cases, the maximum step
size was 4/3 h,, the minimum was 1/3 h,, and the average
was slightly less than h,, where h;, is the initial integration

Table 1. Comparison of predict-only cases

Error = max {|8x/|, |8y[, [8z]}, m
"::‘::" Integrator Apsis Orbit number Number of
1 2 4 6 8 10 steps
1 DVDQ, maximum order 10, minimum order 5,
maximum step 2400, minimum step 75, Apoapsis 0.00124 | 0.200 1.87 2,95 4.32 5.57 1130
average order 8, average step 380 Periapsis 0.0810 2.65 4.24 6.43 9.36 12.14
2 Fourier, fourth order
Variable step Apoapsis 0.0540 0.951 3.59 7.08 11.3 16.4 71
ho = 300 Periapsis 0.324 2.08 7.57 16.2 26.5 39.9
3 Polynomial, fourth order
Variable step Apoapsis 0.0447 0.824 2.81 5.10 7.54 10.4 1711
ho = 300 Periapsis 0.304 1.54 4.55 8.91 13.3 19.2
4 Fourier, sixth order
Yariable step Apoapsis 0.0143 0.474 3.25 8.32 157 254 1712
ho = 300 Periapsis 0.0793 1.88 1.9 29.7 54.5 88.0
5 Polynomial, sixth order
Variable step Apoapsis 0.0123 0.484 3.26 8.29 15.6 25.2 1712
ho = 300 Periapsis 0.0682 1.89 11.8 29.4 54.0 85.2
6 Polynomial, fourth order
Fixed step Apoapsis 0.0402 0.178 1.00 2.55 4.79 7.73 1417
h = 300 Periapsis 177, 4.21 9.37 14.2 18.3 21.9
7 DVDQ, maximum order 9, minimum order 4,
maximum step 2400, minimum step 150, Apoapsis 0.00194 | 0.0149 1.52 2.16 278 3.13 982
average order 7, average step 430 Periapsis 0.259 2.40 2,88 3.52 4.15 415
E = EK (Footnote a)
*E = local error
Eo, = initial loca!l error
k=2 (1+e
r
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step size. In each case, the minimum step occurred at
periapsis and the maximum occurred at apoapsis. The
maximum orders for DVDQ occurred near periapsis and
the minimum orders occurred near apoapsis. The errors
tabulated are the maximums of the absolute errors in the
components of position (the error in z in each instance).

Two main results are evident from these studies. First,
it does not appear to be very advantageous to use higher
orders or variable step sizes. Further investigation is nec-
essary to explain these results. Second, there seems to be
little difference between the Fourier and polynomial inte-
grators. This result becomes more apparent when the
integration coefficients are examined. Table 2 contains
these coefficients for both fourth and sixth orders with a
starting step size h, = 300 sec.

Table 2. Polynomial and Fourier Integration Coefficients

Fourth order
Polynomial Fourier
B 792.0833333333333 791.1839790650130
Ba —1155.833333333333 —1153.177337110016
Ba 1190.000000000000 1087.425341026402
Bis —530.833333333333 —530.0560158768241
B 104.5833333333333 104.6240328954251
Sixth order
Polynomial Fourier
Beo 985.7192460317460 983.3672331781959
Ba —2218.690476190476 — 2207.020820533816
Be: 3499.747023809523 3476.647150904269
Bes —3413.968253968254 —3391.241259327214
B 2019.538690476190 2008.540513368117
Bes —667.0238095238095 —665.0451712873998
Bes 94.67757936507936 94.75235369784858

Table 2 reveals that the Fourier and polynomial integra-
tion coefficients are very similar. These results prompted
further theoretical investigation which led to the fol-
lowing equivalence theorem for Fourier and polynomial
integrators:

TuEOREM. Let N be any positive integer. Let n be any
positive real number and let h be any fixed positive
step size such that Nh < 2r/n. Let t, = —kh for k =
0,1, - - - ,N. Define the Fourier integration coefficients
B (n) as follows:

h
BJ’("):/ T; (n,s)ds, i=01 - - ,N
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where

S
Hsingn(t—tk)
ke

T,-(n,t)-—— v d
!
]:[ sin 5 n(t; — )
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ko #

<

-

Note that the inequality constraint on h prevents the
denominator from being zero. Define the polynomial inte-
gration coefficients y; as follows:

h
e[ P@dsor N
0

where
N
(t—t)
ko
Pi (t) = N¢]
H (ti — t)
k=0
kzj
Then

limo Bi(n)v;

A proof of this theorem, which was previously estab-
lished by Gautschi (Ref. 4), is given in Ref. 5. The theorem
states that the Fourier integrator approaches the poly-
nomial integrator as the mean motion n approaches zero.

Several test runs were made with values of n that varied
from 10% sec to 10* sec’. This range includes the
largest values of n possible in current celestial mechanics
applications. In every case, the two sets of coefficients
agreed to two or three digits. Therefore, one may conclude
that the Fourier method offers no advantage over the
polynomial method in the integration of the differential
equations of celestial mechanics. The Fourier integration
coefficients also have the disadvantage of depending on
both n and the step size h.

C. Comparison of Predictor-Corrector Cases

Table 3 contains a comparison of several predictor-
corrector cases. This table has the same format as Table 1.
The remarks in Subsection B regarding the maximum,
minimum, and average step sizes in Table 1 also apply
to Table 3.
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Table 3. Comparison of predictor-corrector cases

Error = max {|8x|, |8y|, |8z]|}, m
Case . .
number Integrator Apsis Orbit number Numl
1 2 4 6 8 10 | ofsteps
1 DVDQ, maximum order 10, minimum
order 5, maximum step 2400,
minimum step 75, average order 8, Apoapsis 0.00124 0.200 1.85 2.93 4,30 5.56 1135
average step 380 Periapsis 0.0809 2.60 417 6.36 9.31 12.08
2 Polynomial, fourth order
Variable step Apoapsis 0.00183 0.0594 0.311 0.731 1.31 2.06 7n
ho = 300 Periapsis 0.0126 0.198 1.00 2,37 4.22 6.56
3 Polynomial, sixth order
Variable step Apoapsis 0.00330 0.134 0.870 2.21 416 6.72 1286
ho = 400 Periapsis 0.0180 0.513 3.18 7.84 14.4 227
4 Polynomial, tenth order
Variable step Apoapsis 0.0000644 0.0961 0.845 2.22 4,35 7.14 1288
ho = 400 Periapsis 0.00279 0.644 3.85 9.10 16.8 26.2
5 Polynomial, fourth order
Fixed step Apoapsis 0.00162 0.112 0.819 2.24 415 6.77 1417
h = 300 Periapsis 0.0614 0.554 3.36 8.49 15.8 25.0
) Polynomial, sixth order
Fixed step Apoapsis | 0.000286 0.00639 0.0672 0.190 0.373 0.613 1418
h = 300 Periapsis 0.146 0.279 0.234 0.253 1.15 2.36
7 Polynomial, sixth order
Fixed step Apoapsis 0.00313 0.222 1.48 3.84 7.32 12.0 1064
h = 400 Periapsis 0.603 2.94 9.29 17.8 28.6 417
8 Polynomial, tenth order
Fixed step Apoapsis | 0.000235 0.168 1.16 3.07 5.97 2.91 1066
h = 400 Periapsis 0.728 0.428 5.86 19.0 38.3 61.5
14 Polynomial, tenth order
Variable step Apoapsis 0.152E-4 0.226E-2 0.976E-2 | 0.205E-1 0.346E-1 0.527E-1 1714
ho = 300 Periapsis 0.107E-3 0.445E-2 | 0.219E-1 0.573E-1 0.900E-1 0.142
10 DVDQ, £ = EK (Footnote a)
Apoapsis 0.00193 0.0140 1.51 2.11 3.20 3.27 987
Periapsis 0.279 2.38 279 3.38 4.12 4.46
n DVDQ, E = EK
Apoapsis 0.00173 1.35 5.16 4.75 3.84 2.84 893
Periapsis 0.184 7.61 7.20 3.91 0.476 8.25
12 DVDQ, £ = EK
Apoapsis 0.0107 0.566 2.54 1.56 0.624 0.00193 872
Periapsis 0.248 1.57 7.43 13.2 17.3 23.3
*E = local error
Ey = initial local error
k=2 (1+e

r
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Several conclusions may be made from these studies.
For instance, cases 1 through 9 again indicate that taking
fixed steps requires less work (fewer steps) to achieve a
given accuracy than taking variable steps. Hence, it seems
that more error can be introduced at periapsis than at
apoapsis without increasing the total error in the com-
puted solution. Cases 10 through 12 were run as a check
on this hypothesis. Case 10, in particular, tends to sub-
stantiate the hypothesis.

These studies also indicate that higher order (tenth
order) integration formulas are not necessarily more effi-
cient for this type of problem. Also, a comparison of
Tables 1 and 3 indicates that the predict-only mode is

perhaps more efficient (that is, takes fewer derivative
evaluations to achieve a given accuracy) than the predict-
correct mode. But further study is needed in these areas.

Finally, it appears from these studies that DVDQ is
approximately fifteen to 20% more efficient than the fixed-
order polynomial type integrator. Therefore, since the
Fourier method is essentially equivalent to the polyno-
mial method, DVDQ seems to be the most efficient of the
integrators studied for use in a variation-of-parameters
formulation. These studies indicate that for maximum
integrator efficiency DVDQ should be run in the predict-
only mode, with the error introduced at each step propor-
tional to 1/7.
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